

Outline

- Detecting New Physics at CDF
- •New CDF Results on the Searches for:
 - •New Phenomena w/ Leptons in Final States:
 - •High Mass Resonances
 - •SUSY in Multi-lepton Signature
 - Extra Dimensions
 - •New Physics in MET+Jets
 - •Higgs
- •Summary

Searches for New Physics

•Predicted rates for new physics are LOW !!!

To search for New Physics is like:

- "searching for a needle in a hay stack" (western version)
 - •Or
- "searching for a needle in the ocean" (eastern version)
- •Need to look for distinctive signature to suppress SM background

NEW PHYSICS !!!

F

New Phenomena Searches at CDF

•New physics can manifest itself in several rare final state signatures of p-pbar collisions

New Phenomena Searches at CDF

Experimental Signatures

 $l^{\pm}l^{\mp}, l^{\pm}l^{\pm}, ll', llll, lv, lvlv$ lljj, lvjj, vvjj, llbb, lvbb, vvbb $l\gamma + X$ $\gamma\gamma, \gamma + MET, \gamma\gamma + MET$ jets + MET bb/cc + MET, bbbb + MET lll + MET, bbll + MET lvet + b/c + MET long - lived particles

New Phenomena

W', Z'

Extra Dimensions

Technicolor

Leptoquarks

Compositeness

Excited leptons

SUSY

Higgs

Need good understanding of the SM final states to **DISCOVER** *New Phenomena*

Measurement of Final State Objects with CDF τ_h ID τcone isolation Tau ID: •Narrow iso. cluster •Low # tracks • π^0 identification •Coverage : $|\eta| < 1$ •ID eff. ~ 46% Song Ming Wang, Tevatron Connection:

Searches for Higgs and New Phenomena at CDF

Run II Data Collected at CDF

- •Tevatron has delivered ~1.05 fb⁻¹ to CDF
- •CDF has collected about ~0.85 fb⁻¹ data
- •Results shown today are based on data samples of $\sim 0.2 0.4 \text{ fb}^{-1}$

New Results from CDF

Topic	Analyses	L(pb-1)	Cover
High Mass	Z'→ee, μμ, ττ	200/450	yes
	W'→ev	205	yes
SUSY	Chargino/Neutralino in Trilepton	346/224	yes
	Scalar Neutrino (RPV)	344	yes
	Stop Pair Production (RPV)	200	no
	Stop Pair Production (RPC)	163	no
	Squark/Gluino Production	254	yes
Extra Dimension	ED in Multi-lepton	88	yes
Higgs	WH→lvbb	319	yes
	$WH \rightarrow WWW^*$	194	no
	φ>ττ	310	yes

Please visit: http://www-cdf.fnal.gov/physics/exotic/exotic.html

Search for High Mass Resonances w/ Leptons in Final States

Searches in High Mass Di-Lepton

σ*Br Limit in Search for Mass Bumps (ee+μμ)

Limits at 95% C.L.

New Results in High Mass Di-Electron Search

- •New analysis use 448 pb⁻¹ data sample (~2x the previous e⁺e⁻ analysis)
- •Look at both the M(ee) and decay angle $\cos \theta^*$ for signal of new physics

$$A_{FB} = \frac{d\sigma(\cos\theta^* > 0) - d\sigma(\cos\theta^* < 0)}{d\sigma(\cos\theta^* > 0) + d\sigma(\cos\theta^* < 0)}$$

- •New resonance could interfere with γ and Z
- •May observe the effect in A_{FB} distribution
- •Can observe evidence below the

Z' pole ratron Connection:

New Results in High Mass Di-Electron Search

- •Select events with 2 high Pt electrons
 - Central-Central, or Central-Plug
- •Good agreement between data and prediction for full mass region

Events in Signal Region

	Data	Predicted
M>200 GeV	120	$125 \pm 11_{\rm stat}$

New Results in High Mass Di-Electron Search

Limits in High Mass Di-Lepton Search

	CDF	CDF	CDF	DØ	LEP2
	e+e-	ee + μμ	ττ	ee	
	448 pb ⁻¹	~200 pb ⁻¹	~200 pb ⁻¹	~200 pb ⁻¹	
Seq. Z'	845 GeV	825 GeV	394 GeV	780 GeV	1.8 TeV
E6 Z _I	625 GeV	615 GeV		575 GeV	
E6 Z _χ	720 GeV	675 GeV		640 GeV	673 GeV
$E6 Z_{\psi}$	690 GeV	690 GeV		650 GeV	481 GeV
E6 Z _η	715 GeV	720 GeV		680 GeV	434 GeV

Limits in High Mass Di-Lepton Search

- Previous analyses focused on specific Z' models
- Carena, Daleo, Dobrescu, and Tait
 - •Defines 4 general model classes (PRD 70:093009, 2004)
 - •B-*x*L, q+*x*u, 10+*x*5, d-*x*u
 - Within each class, a Z' model is defined by :
 - mass M_Z,
 - strength g_z
 - parameter *x*
 - •E6 motivated models:
 - \bullet 10+x5 models :
 - $\bullet Z_{\eta}(x=-0.5, g_z=0.344)$
 - • $Z_{\psi}(x=1, g_z=0.272)$
 - • $Z_{\gamma}(x=-3, g_z=0.211)$

Comparing CDF to LEP2:

- •CDF's sensitivity relative to LEP2 depends on model and *x*
- •B-*x*L : sensitivity similar to LEP2
- •10+*x*5 : better sensitivity than LEP2

CDF Run II Preliminary (448 pb⁻¹)

W' Search in ev Channel

- •W' additional charged heavy vector boson
- Appears in theories based on ext. of gauge group of SM
 - •Left-Right symmetry models
 - Feature new gauge bosons, including a heavy right-handed W'
- •Assume W' \rightarrow ev, and v is light and stable

W' Search in ev Channel

- => No evidence for W'
- •Set limits on W' production rate
- Use binned likelihood fitting method
- •Two types of systematic are examined as function of M_T:
 - •Event rate (dominant: PDF)
 - •Signal shape (dominant: elec energy scale)
- σ *B(W' \rightarrow ev) limit : ~50-100 fb for M(W')>500 GeV at 95% CL

Limit: $M(W'_{SM}) > 842 \text{ GeV/}c^2$

Run I results (with the same assumptions): $M(W'_{SM}) > 754 \text{ GeV/}c^2$

Search for SUSY in Multi-Lepton Final States

Searches for Chargino/Neutralino in Tri-Lepton

- •Pair production of chargino/neutralino can produce multi-lepton and Et in final state (assume R-parity conserved)
- •Small contributions from SM processes in this signature
 - ⇒Very clean, "Gold Plated" signature to find SUSY
- •So far completed two channels:

	High Pt	Low Pt
Lepton 1	e: >20 GeV	e: >10 GeV
Lepton 2	e: >8 GeV	e: >5 GeV
Lepton 3	e/m: >5 GeV	trk: >4 GeV

- •Both analyses require :
 - MET > 15 GeV
 - l_1 , l_2 not back-to-back => reduce DY
 - Veto events in Z and low mass resonances
- •Low Pt analysis has higher backgrounds, require additional cuts

Searches for Chargino/Neutralino in Tri-Lepton

High Pt: Final selection (No MET cut)

	"High Pt"	"Low Pt"
mSugra	0.5	0.5
Exp. Bkg.	0.16±0.07	0.36±0.27
OBSERVED	0	2

Low Pt: Final selection (No MET cut)

•To do:

- •Include μ channel (soon)
- Extend to forward region (elec)
- Combine results from all channels

Search for Scalar Neutrino (R-Parity Violation)

- Resonant slepton can be produced at Tevatron via λ ' κ p coupling
- Slepton can decay to two leptons via λ Kp coupling
- •CDF search for $\widetilde{\mathcal{V}}$ in the e- μ final state
- Selections:
 - •Electron: Et>20 GeV
 - •Muon: Pt>20 GeV
 - e,μ : opposite charged
- Relatively high acceptance in the region of interest
- Very clean signature
 - •Dominant background: Z→ττ

Song Ming Wang, T Searches for Higgs and

Search for Scalar Neutrino (R-Parity Violation)

After all cuts:

Highest $M(e\mu)$ event :

 $M(e\mu) = 158 \text{ GeV}$

Elec Et=59 GeV, Muon Pt=102 GeV

•Nobs=77, Nexpect=71.3±1.8(stat)

•For $M(e\mu)>100 \text{ GeV}$

•Nobs=5, Nexpect=8.0±1.1(stat)

•Backgrounds:

• $Z \rightarrow \tau \tau$, ttbar, Diboson

Song Ming Wang, Tevatron Searches for Higgs and New Ph

Search for Scalar Neutrino (R-Parity Violation)

•Interpret x-section limit:

- -For λ_{132} =0.05 λ'_{311} =0.16
 - •M>460 GeV
- –Can set a limit in 2D λ'_{311} vs $M(\tilde{\nu})$

Song Ming Wang
Searches for Higgs and New Phenomena at CDF

Search for Universal Extra Dimension (UED)

- •UED (Appelquist, Cheng, Dobrescu: Phys. Rev. D64, 035002 (2001)):
 - All particles live in a (4+n) dimensional space. SM fields can propagate into the extra compact dimensions of size *R* (~TeV⁻¹)
 - 1st KK excitation of the SM particle undergoes cascade decays into its SM counterpart and the lightest KK particle (LKP)
 - •LKP: stable and interact weakly (like LSP in SUSY)
 - Pair production of KK particles could results in final states with multiple leptons and MET
 - Leptons are usually soft, due to cascade decays

 Q_1, Z_1, W_1, L_1, v_1 counterparts of q, Z, W, l, v

- •In minimal UED (MUED) scenario:
 - •Has 3 free parameters (R, Λ, m_h)
 - R : size of extra dimensions
 - Λ : radiation correction cut off
 - m_h: SM Higgs mass

Search for Universal Extra Dimension (UED)

- •CDF searched for UED using Run 1 data (87.5 pb⁻¹), requiring at least three leptons
- •SM backgrounds:
 - bb-bar/cc-bar, tt-bar, WZ, ZZ real multilepton
 - DY, WW di-lepton + fake
- Selections:
 - \geq 3 leptons (e, μ) (Et(pt) > 11,5,5 GeV)
 - At least one pair e+e-, μ+μ-
 - Leptons not back-to-back (reduce DY)
 - Remove resonances, bb/cc
 - Lepton isolated, MET>15 GeV
- •Consider only "non-μμμ" channels
 - •Large fraction of BG with "μμμ" signature from bb/cc

- •From "non-μμμ" channel,
 - •Nexpect=0.05±0.005, Nobs=0
 - Nsignal=0.38 (R^{-1} =350 GeV, ΛR =20, m_h =120 GeV)
- @ 95% CL, upper limit cross section for total KK production = 7.9 pb
 - • \Rightarrow R⁻¹> 280 GeV (\land R=20, m_h=120 GeV)

Search for New Physics in MET+Jets

Search for Squarks/Gluino in MET+Jets

- •Light colored sparticles (\widetilde{q} , \widetilde{g}) can be copiously pair produced at Tevatron
- Decays of \tilde{q} , \tilde{g} may produce multiple jets and large Et (if Rp is conserved)

- •CDF performs direct search for \tilde{q}, \tilde{g} using $\not\!\!E t$ + jets data sample (~254 pb-1)
- Challenging analysis:
 - Signal is buried under enormous QCD multi-jet background
 - Missing energy mis-measurements
 - Jet energy mis-measured
 - Non-collision backgrounds (beam halo, hot towers..)

Wang, Tevatron Connection: ggs and New Phenomena at CDF

Search for Squarks/Gluino in MET+Jets

Search for the Higgs Boson

Searches for SM Higgs

•CDF search for SM Higgs in several channels:

1st results soon

- •NEW updated results from $WH \rightarrow lvbb$
- •Selection:
 - High pt lepton data (L=319 pb⁻¹)
 - One high pt central e or μ , large MET (MET>20 GeV)
 - 2 jets (at least one is tagged as b-jet)
 - Veto events w/>1 lepton (suppress ttbar)

Searches for SM Higgs

Tevatron Run II Preliminary

- •Higgs production rate in MSSM can be much larger than in SM at high tanβ
 - •Coupling of Higgs to down-type fermions are enhanced by factor of tanβ

• $\sigma(pp \rightarrow H/A/h) \propto tan^2 \beta$

- \bullet Br($\phi \rightarrow bb$)~90%
 - gg,bb→φ→bb: need to overcome large QCD BG
- •Br($\phi \rightarrow \tau \tau$)~10%
 - gg,bb $\rightarrow \phi \rightarrow \tau \tau$: overcome much smaller SM BG

Promising channel at Tevatron

eV) ng, Tevatron Connection : and New Phenomena at CDF

•Selections:

- -Lepton (e/ μ) p_T>10 GeV
- −Had. Tau p_T>15 GeV
- $-H_T(|P_T(e/\mu)|+|P_T(h)|+|MET|)>50 \text{ GeV}$
- -Anti-W cut

•Backgrounds:

- $-Z \rightarrow \tau \tau$
- -W+jets, QCD: jets faking τ
- ttbar, diboson, Z→ee/μμ

- Good agreement between data and SM expectation in low mass region
- •High mass events (m>120):
 - -Exp. SM = 8.4 ev, Obs. = 11
- •Limit:
 - -Fit mass spectrum for (Bkg+Z+A)

•Interpret cross-section limit in terms of $\tan\beta$ and m_A :

- •For μ <0
 - Complementary to SUSYHiggs bbb(b) mode (from D∅)
- •For μ >0:
 - $-\phi \rightarrow \tau \tau$ channel extends to higher higgs mass and lower tanβ region than for $\mu < 0$

•Projection of the reach of this search in $\phi \rightarrow \tau \tau$ to higher luminosity

M. Carena et al., hep-ph/0202167:

 m_h^{max} : $\mu = +200$, $A_0 = \sqrt{6}M_{SUSY}$ (we use $M_{SUSY} = 1 \text{ TeV}$)

Min mix: $\mu = +200$, $A_0 = 0$

Summary

- •CDF has an extensive program in searches for new physics at the Tevatron
 - Exploring many exotic new phenomena (e.g. Extra Dimensions, Champs, Magnetic Monopoles, Stop, Sbottom)
 - Systematic approach in several other searches
 - •Z' $(ee, \mu\mu, \tau\tau, spin 0, 1, 2...)$
 - Higgs (different production and decays channels)
- Although have not yet make new discoveries w/ current analyzed data
 - Have developed/sharpen our analysis tools
- Have entered the **fb**-1 **era**!
 - •VERY EAGER to look at these new data !!!

Search for Stop Quark in R-Parity Violation

- •If stop quark is light => can be pair produced at Tevatron
- •If Kp is allowed, and $\lambda'_{333} \neq 0, \Rightarrow \widetilde{t_1} \rightarrow b \tau$
- •Assume Br($\tilde{t}_1 \rightarrow b \tau$) = 100%

Selection:

- •1 lepton (e or μ), 1 hadronic tau
- •≥ 2 jets

Search for Stop Quark in MET+Jets

- Stop quark is often predicted to be light due to large top Yukawa coupling
- •Depending on the stop's mass w.r.t. other sparticles, assume BR($\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$)=100%
- Signature:
 - •2 jets + Large MET
 - Tag charm jets with JetProb

•JetProb:

• Compute probability a jet originates from primary vertex (based on track impact parameter)

All selection cuts applied, except tagging charm jets

ron Connection:

/ Phenomena at CDF

Search for Stop Quark in MET+Jets

	Exp.	Obs.
Pre-tag	105 ± 12	119
Tag (silicon)	8.3 ± 2.3	11

- No excess, set limit
- Benchmark assuming

$$BR(\tilde{t}_1 \to c\tilde{\chi}_1^0) \sim 100\%, m_{\chi_1^0} = 40 \text{GeV} / c^2$$

Search for Stop Quark in MET+Jets

	Exp.	Obs.
Pre-tag	105 ± 12	119
Tag (silicon)	8.3 ± 2.3	11

- No excess, set limit
- Benchmark assuming

$$BR(\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0) \sim 100\%, m_{\chi_1^0} = 40 \text{GeV}/c^2$$

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.